Multi-Class Composite N-gram Language Model for Spoken Language Processing Using Multiple Word Clusters

نویسندگان

  • Hirofumi Yamamoto
  • Shuntaro Isogai
  • Yoshinori Sagisaka
چکیده

In this paper, a new language model, the Multi-Class Composite N-gram, is proposed to avoid a data sparseness problem for spoken language in that it is difficult to collect training data. The Multi-Class Composite N-gram maintains an accurate word prediction capability and reliability for sparse data with a compact model size based on multiple word clusters, called MultiClasses. In the Multi-Class, the statistical connectivity at each position of the N-grams is regarded as word attributes, and one word cluster each is created to represent the positional attributes. Furthermore, by introducing higher order word N-grams through the grouping of frequent word successions, Multi-Class N-grams are extended to Multi-Class Composite N-grams. In experiments, the Multi-Class Composite N-grams result in 9.5% lower perplexity and a 16% lower word error rate in speech recognition with a 40% smaller parameter size than conventional word 3-grams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-class composite n-gram language model using multiple word clusters and word successions

In this paper, a new language model, the Multi-Class Composite N-gram, is proposed to avoid a data sparseness problem in small amount of training data. The Multi-Class Composite Ngram maintains an accurate word prediction capability and reliability for sparse data with a compact model size based on multiple word clusters, so-called Multi-Classes. In the Multi-Class, the statistical connectivity...

متن کامل

Multi-class composite N-gram based on connection direction

A new word-clustering technique is proposed to efficiently build statistically salient class 2-grams from language corpora. By splitting word neighboring characteristics into word-preceding and following directions, multiple (two-dimensional) word classes are assigned to each word. In each side, word classes are merged into larger clusters independently according to preceding or following word ...

متن کامل

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

New language models using phrase structures extracted from parse trees

This paper proposes a new speech recognition scheme using three linguistic constraints. Multi-class composite bigram models [1] are used in the first and second passes to reflect word-neighboring characteristics as an extension of conventional word n-gram models. Trigram models with constituent boundary markers and word pattern models are both used in the third pass to utilize phrasal constrain...

متن کامل

Tightly integrated spoken language understanding using word-to-concept translation

This paper discusses an integrated spoken language understanding method using a statistical translation model from words to semantic concepts. The translation model is an N-gram-based model that can easily be integrated with speech recognition. It can be trained using annotated corpora where only sentencelevel alignments between word sequences and concept sets are available, by automatic alignm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001